
Francisco González-Acuña - Wilbur Whitten
IMBEDDINGS OF THREE-MANIFOLD GROUPS
ISBN: 0-8218-2534-8
Αρχική τιμή / Τελική τιμή
€ 35,20
/
€ 28,00
Σειρά:
Αντικείμενο:
Εκδόσεις:
Σελίδες:
Διαστάσεις:
Έκδοση:
Ημερομηνία έκδοσης:
Εξώφυλλο:
Γλώσσα:
(-20,45%)
Memoirs of the American Mathematical Society
Algebra
American Mathematical Society
72
18 x 25
1η
Σεπτέμβριος 1992
Μαλακό
Αγγλικά
This work deals with the two broad questions of how three-manifold groups imbed in one another and how such imbeddings relate to any corresponding π1π1-injective maps. The focus is on when a given three-manifold covers another given manifold. In particular, the authors are concerned with 1) determining which three-manifold groups are not cohopfian—that is, which three-manifold groups imbed properly in themselves; 2) finding the knot subgroups of a knot group; and 3) investigating when surgery on a knot KK yields lens (or “lens-like”) spaces and how this relates to the knot subgroup structure of π1(S3−K)π1(S3−K). The authors use the formulation of a deformation theorem for π1π1-injective maps between certain kinds of Haken manifolds and develop some algebraic tools.
